Contact-dependent regulation of N-type calcium channel subunits during synaptogenesis.

نویسندگان

  • F H Bahls
  • R Lartius
  • L E Trudeau
  • R T Doyle
  • Y Fang
  • D Witcher
  • K Campbell
  • P G Haydon
چکیده

The developmental regulation of the N-type calcium channel during synaptogenesis was studied using cultured rat hippocampal neurons to elucidate the roles of extrinsic versus intrinsic cues in the expression and distribution of this channel. Prior to synapse formation, alpha1B and beta3 subunits of the N-type calcium channel were distributed diffusely throughout neurites, growth cones, and somata. As synaptogenesis proceeded, the subunit distributions became punctate and colocalized with the synaptic vesicle protein synaptotagmin. Isolated neurons were also examined to test for the requirement of extrinsic cues that control N-type calcium channel expression and distribution. These neurons expressed N-type calcium channel subunits, but their distributions remained diffuse. Functional omega-conotoxin GVIA-sensitive channels were expressed in isolated neurons, although the distribution of alpha1B subunits was diffuse. The distribution of the alpha1B subunit and synaptotagmin only became punctate when neuron-neuron contact was allowed. Thus, the expression of functional N-type calcium channels is the result of an intrinsic program while extrinsic regulatory cues mediated by neuron-neuron contact are required to control their distribution during synaptogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ephrin-A5 and EphA5 Interaction Induces Synaptogenesis during Early Hippocampal Development

BACKGROUND Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological matur...

متن کامل

N-Type calcium channels in the developing rat hippocampus: subunit, complex, and regional expression.

The expression of multiple classes of voltage-dependent calcium channels (VDCCs) allows neurons to tailor calcium signaling to functionally discrete cellular regions. In the developing hippocampus a central issue is whether the expression of VDCC subtypes plays a role in key phases such as migration and synaptogenesis. Using radioligand binding and immunoblotting, we show that some N-type VDCCs...

متن کامل

Regulation of N-type Voltage-Gated Calcium Channels and Presynaptic Function by Cyclin-Dependent Kinase 5

N-type voltage-gated calcium channels localize to presynaptic nerve terminals and mediate key events including synaptogenesis and neurotransmission. While several kinases have been implicated in the modulation of calcium channels, their impact on presynaptic functions remains unclear. Here we report that the N-type calcium channel is a substrate for cyclin-dependent kinase 5 (Cdk5). The pore-fo...

متن کامل

Astrocytes selectively enhance N-type calcium current in hippocampal neurons.

Astrocytes influence neuronal development, synapse formation, and synaptic transmission, partly through affecting neuronal calcium signals. In order to elucidate the extent to which astrocytes modulate neuronal voltage-gated calcium currents, we performed a whole-cell patch clamp analysis of neurons in astrocyte-deplete and astrocyte-enriched conditions. We demonstrate that hippocampal neurons ...

متن کامل

KCC2 Expression Promotes the Termination of Cortical Interneuron Migration in a Voltage-Sensitive Calcium-Dependent Manner

The molecular mechanisms controlling the termination of cortical interneuron migration are unknown. Here, we demonstrate that, prior to synaptogenesis, migrating interneurons change their responsiveness to ambient GABA from a motogenic to a stop signal. We found that, during migration into the cortex, ambient GABA and glutamate initially stimulate the motility of interneurons through both GABA(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurobiology

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 1998